Przepompownic śfieków

PRZEPOMPOWNIE ŚCIEKÓW

Thastosowanie

Przepompownie ścieków produkcji Hydro-Vacuum S.A. wykorzystywane są w systemach kanalizacji grawitacyjno-ciśnieniowej oraz ciśnieniowej i przeznaczone są do transportu ścieków na duże odległości bądź do podnoszenia na wyższy poziom. Wobec tego wykorzystanie przepompowni ścieków umożliwia oddalonym od kolektorów kanalizacyjnych:
D indywidualnym posesjom,
D gospodarstwom rolnym,

- osiedlom jednorodzinnym,

D ośrodkom wypoczynkowo-wczasowym,
D zakładom przemysłowym,
D miejskim i gminnym systemom kanalizacyjnym przepompowywanie ścieków bytowo-gospodarczych, wód drenażowych i opadowych oraz ścieków przemysłowych do kolektorów zbiorczych lub bezpośrednio do oczyszczalni ścieków. W systemach kanalizacyjnych przepompownie te mogą być stosowane jako przepompownie pośrednie, strefowe i centralne.

Buctowa

1.1 Wstęp

Przepompownie ścieków produkcji Hydro-Vacuum S.A. są kompletnymi w pełni zautomatyzowanymi urządzeniami nie wymagającymi stałej obsługi.
Kompletna przepompownia składa się z czterech podstawowych podzespołów:

- jednego lub dwóch zespołów pompowych typu FZ,

D zbiornika,
D układu zabezpieczająco-sterującego typu UZS,
D układu hydraulicznego.

1.2 Zespoty pompowe

Przepompownie ścieków wykonywane są z jednym zespołem pompowym lub jako zestawy wielopompowe. W układach wielopompowych jedna pompa stanowi zawsze tzw. rezerwę czynną. W zależności od średnicy króćca tłocznego występują typy pomp: FZ1, FZ2, FZ3. W zależności od rodzaju pompowanych ścieków oraz parametrów pracy ($\mathrm{Q}-\mathrm{H}$) stosowane są następujące odmiany pomp:
D z rozdrabniaczem typu FZR,
D o swobodnym przeplywie (vortex) typu FZV,
D z wirnikiem kanałowym typu FZB.
Pompy wyposażone w system rozdrabniający umożliwiają przetłaczanie ścieków w przewodach o mniejszych średnicach (min. DN 32).
Pompy o swobodnym przeplywie (vortex) zmniejszają ryzyko zapychania się pomp.
Pompy z wirnikiem kanałowym stosowane są głównie do pompowania wód
 opadowych, ścieków przemysłowych nie zawierające elementów długo włóknistych.

1.3 Zbiorniki

Przepompownie ścieków wykonywane są z czterech podstawowych typów zbiorników;

- polietylen PE ,
- polimerobeton,
- beton B45,

D poliester zbrojony włóknem szklanym z wylewanym dnem polimerobetonowym.
W zależności od wymagań projektanta powyższe zbiorniki wykonuje się w zakresie średnic od 600 do 2500 mm i wysokościach do 6000 mm .
W górnej części zbiornika montowany jest właz umożliwiający zejście do przepompowni lub wyciągnięcie pomp oraz elementów wyposażenia hydraulicznego.
Typy włazów dobiera się w zależności gdzie zlokalizowana jest przepompownia: w ciągu czy poza ciągiem komunikacyjnym.

PRZEPOMPOWNIE ŚCIEKÓW

1.4 Układ zabezpieczajaco-sterujacy UZS

Sterowanie pracą pomp dokonuje się za pomocą urządzeń zabezpieczająco-sterujących UZS-4, UZS-7, UZS-8. Stosowane są pływakowe sygnalizatory poziomu lub hydrostatyczne i ultradźwiękowe systemy kontroli poziomów. Urządzenia zabezpie-czającosterujące UZS w wykonaniach zewnętrznych przystosowane są do pracy w warunkach klimatu umiarkowanego w temperaturze otoczenia $-30^{\circ} \mathrm{C}$ do $+40^{\circ} \mathrm{C}$, przy wilgotności względnej powietrza do 80% przy $20^{\circ} \mathrm{C}$, w otoczeniu wolnym od wody oraz pyłów, gazów i par wybuchowych, palnych lub chemicznie czynnych. Wysokość miejsca zainstalowania nie powinna przekraczać 1000 m nad poziomem morza. Urządzenia zabezpieczająco-sterujące UZS zbudowane są z elementów automatyki elektronicznej, elektrycznej, łączników oraz aparatury sterowniczej. Urządzenia zabezpieczającosterujące UZS przystosowane są do zawieszania na ścianie budynku lub bezpośrednio na zbiorniku przepompowni lub jego okolicy.
 W dolnej części obudowy umieszczone są dławice uszczelniające, przez które doprowadzone są przewody zasilające, odbiorcze i sterownicze. Wszystkie urządzenia posiadają w wykonaniu standardowym akustyczno-optyczną sygnalizację stanów alarmowych. Oferowane systemy monitoringu GSM przewidziane są do monitorowania pracy przepompowni ścieków pracujących w obszarze działania telefonii komórkowej GSM.

1.5 Uktad hydrauliczny

\qquad
Wewnętrzny układ hydrauliczny standardowo składa się z:
D stopy sprzęgające z prowadnicami lub bez prowadnic tzw. sprzęg górny,
D pionowych rurociągów tlocznych,
D zaworów zwrotnych,
D zaworów odcinających,
D kolektora tzw. „portki" (przepompownia dwu pompowa),
D przyłącza do płukania instalacji.
Rurociągi, kolektor, kołnierze oraz elementy złączne wykonywane są ze stali kwasoodpornej. Stopy sprzęgające i zawory wykonywane są z żeliwa zabezpieczone korozyjnie farbami proszkowymi.
Ponadto przepompownie wyposażone są w:
D drabinkęzłazową,
D pomost roboczy (dla zbiorników pow. 5000 mm wysokości),
D łańcuchy do opuszczania i wyciągania pomp,

- łańcuch do mocowania sygnalizatorów poziomu,

D system wentylacji grawitacyjnej.
Powyższe elementy wykonane są ze stali kwasoodpornej (wentylacja PVC).

Zalety

D nowoczesne rozwiązania konstrukcyjne,
D kompletne wyposażenie przepompowni,
D gwarancja wieloletniej, niezawodnej pracy,
D łatwość i szybkość wbudowania przepompowni w każdych warunkach gruntowowodnych, ograniczająca do minimum prace ziemne i montażowe,
D zautomatyzowana, bezobsługowa praca urządzenia,
D możliwość przepłukiwania rurociągów poprzez podłączenie przez złączkę "strażacką",
D zastosowanie energooszczędnych silników dostępnych również w wersji przeciwwybuchowej,
D niskie koszty zakupu i eksploatacji,
D stały nadzór techniczny oraz gwarancyjna i pogwarancyjna obsługa techniczna,
D łatwy dostęp do części zamiennych,
D realizacja indywidualnych wymagań i dostosowanie wyrobu do wymogów klienta,
D niskie koszty zakupu oprzyrządowania dodatkowego,
D wysoka sprawność i długotrwała żywotność w szczególnie trudnych warunkach eksploatacyjnych,
D średnica i kąt króćca napływowego dostosowane do wymogów klienta,
D powiadamianie GSM.

PRZEPOMPOWNIE ŚCIEKÓW

Dane techonichne

Odmiany przepompowni	$\begin{aligned} & \text { Ilość } \\ & \text { pomp } \end{aligned}$	Rodzaj sterowania	Material zbiornika	Srednica zbiornika	Wysokość zhiornika	Pompy		Srednica rurociagu thocznego
				[mm]	[mm]	typ	$\begin{aligned} & \hline \mathrm{Moc} \\ & {[\mathrm{~kW}]} \\ & \hline \end{aligned}$	[mm]
PSA	1	UZS. 4	PEHD	600-1000	2000-2500	$\begin{aligned} & \hline \text { FZV. } 1 \\ & \text { FZR. } 1 \\ & \text { FZX. } 1 \end{aligned}$	0,55-3,0	DN32-DN65
PSB	1-2	$\begin{aligned} & \text { UZSS. } 4 \\ & \text { UZS. } 6 \\ & \text { UZS. } 7 \\ & \text { UZS. } \end{aligned}$	$\begin{gathered} \text { - beton B45 } \\ \text { - polimerobeton } \\ \text { - poliester z dnem } \\ \text { polimerobetonowym } \end{gathered}$	1000-1200	3000-6000	$\begin{aligned} & \text { FZV. } 1 \\ & \text { FZR. } 1 \\ & \text { FZX. } 1 \end{aligned}$	0,55-3,0	DN65- DN80
PSC	2	$\begin{aligned} & \text { UZS. } 6 \\ & \text { UZS. } 7 \\ & \text { UZS. } 8 \end{aligned}$	$\begin{gathered} \text { - beton B45 } \\ \text { - polimerobeton } \\ \text { - poliester z dnem } \\ \text { polimerobetonowym } \end{gathered}$	1200-2500	3000-6000	$\begin{aligned} & \text { FZV. } 2 \\ & \text { FZB. } 2 \end{aligned}$	1,1-11,0	DN80- DN160
PSD	2	$\begin{aligned} & \text { UZS. } 6 \\ & \text { UZS. } 7 \\ & \text { UZS. } 8 \\ & \hline \end{aligned}$		1600-2500	3000-6000	$\begin{aligned} & \text { FZV. } 3 \\ & \text { FZB. } 3 \end{aligned}$	2,2-11,0	DN80 - DN160

Strulitura ornaczenia warobu

2
b

1

\mathbf{h}

Odmiana konstrukicyina na1"

Odmiana konstrukcyjna „a"		Rodzaj odmiany		
A	Przepompownia ścieków z zastosowaniem zaczepu „górnego" typu ZSP.0			
B	Przepompownia ścieków z zastosowaniem zaczepu „,dolnego" typu ZSP.1	(z prowadnicami rurowymi)		
C	Przepompownia ścieków z zastosowaniem zaczepu „dolnego" typu ZSP.2	(z prowadnicami rurowymi)		
D	Przepompownia ścieków z zastosowaniem zaczepu „dolnego" typu ZSP.3	(z prowadnicami rurowymi)		

llose pomp w pruepompowin „b"

Typ	ilość pomp	Pompa	Moc [kW]	Napięcie [V]	Wydajność Q [m³/h]	Wysokość podnoszenia H [m]	Rodzaj sterowania
PSA. 1	1	FZV. 1	0,55-1,1	230	do 33,0	do 15,3	UZS. 4
PSA. 1	1	FZV. 1	0,55-2,2	400	do 33,0	do 15,3	UZS. 4
PSA. 1	1	FZR. 1	1,5	230	do 34,8	do 31,0	UZS. 4
PSA. 1	1	FZR. 1	1,5-2,2	400	do 34,8	do 31,0	UZS. 4
PSA. 1	1	FZX. 1	1,5-3,0	400	do 34,8	do 35,0	UZS.4, UZS. 6
PSB	1 lub 2	FZV. 1	0,55-1,1	230	do 33,0	do 15,3	UZS.4,UZS.7.UZS. 8
PSB	1 lub 2	FZV. 1	0,55-2,2	400	do 33,0	do 15,3	UZS.4,UZS.7.UZS.8
PSB	1 lub 2	FZR. 1	1,5	230	do 34,8	do 31,0	UZS.4,UZS.7.UZS. 8
PSB	1 lub 2	FZR. 1	1,5-2,2	400	do 34,8	do 31,0	UZS.4,UZS.7.UZS.8
PSB	1 lub 2	FZX. 1	1,5-3,0	400	do 34,8	do 35,0	UZS.4,UZS.6,UZS.7,UZS.8
PSC. 2	2	FZB. 2	1,1-9,2	400	do 90,0	do 45,0	UZS.7,UZS. 8
PSC. 2	2	FZV. 2	1,5-11,0	400	do 90,0	do 35,0	UZS.7,UZS. 8
PSD. 2	2	FZB. 3	2,2-11,0	400	do 210,0	do 57,0	UZS.7,UZS. 8
PSD. 2	2	FZV. 3	2,2-11,0	400	do 220,0	do 35,0	UZS.7,UZS. 8

PRZEPOMPOWNIE ŚCIEKÓW

Whonanie materiatowe zbiomila od"

Wykonanie materiafowe zbiornika „d"	Rodzaj materiaiłu zbiornika		Odmiana konstrukcyjna pompowni		
1	Zbiornik polimerobetonowy	PSA	PSB	PSC	PSD
2	Zbiornik z kręgów betonowych		x	x	x
3	Zbiornik tworzywowy PE		x	x	x
4	Zbiornik Z laminatów poliestrowo-szklanych z dnem Z polimerobetonu		x		

Wykay średmic i wysokości mbiorników
 w przepompowniach „ $\mathrm{e}_{1} \mathrm{e}_{2} \mathrm{e}_{3} \mathrm{e}_{4}$ "

Wykaz średnic i wysokości zbiorników w przepompowniach określenie struktury członu „, $\mathrm{e}_{1} \mathrm{e}_{2} \mathrm{e}_{3} \mathrm{e}_{4}$ "						
Średnica zbiornika $\mathrm{e}_{1} \mathrm{e}_{2}$	Wysokość zbiornika $e_{3} e_{4}$	Opis zbiornika	Występowanie w typach przepompowni			
			PSA	PSB	PSC	PSD
06		Średnica zbiornika ø600	X			
08		Średnica zbiornika ø800	X			
10		Średnica zbiornika ø1000		x		
12		Średnica zbiornika ø1200		X	x	
16		Średnica zbiornika ø1600			X	X
20		Średnica zbiornika ø2000			X	X
25		Średnica zbiornika ø2500			X	X
	20	Wysokość zbiornika h=2000	x			
	22	Wysokość zbiornika h=2200	x			
	24	Wysokość zbiornika h=2400	x			
	26	Wysokość zbiornika h=2600	x			
	30	Wysokość zbiornika h=3000		x	x	x
	32	Wysokość zbiornika h=3200		X	X	X
	34	Wysokość zbiornika h=3400		X	x	X
	36	Wysokość zbiornika h=3600		X	X	X
	38	Wysokość zbiornika h=3800		X	X	X
	40	Wysokość zbiornika h=4000		x	x	X
	42	Wysokość zbiornika h=4200		X	X	X
	44	Wysokość zbiornika h=4400		x	X	X
	46	Wysokość zbiornika h=4600		x	x	x
	48	Wysokość zbiornika h=4800		X	X	X
	50	Wysokość zbiornika h=5000		X	X	X
	52	Wysokość zbiornika h=5200		x	x	X
	53	Wysokość zbiornika h=5400		x	X	X
	56	Wysokość zbiornika h=5600		X	X	X
	58	Wysokość zbiornika h=5800		X	X	X
	60	Wysokość zbiornika h=6000		X	x	X

Sredmica prytzcha rurociagu tochnego "F"

Wykaz średnic rurociagów thoczonych podiłaczanych do przepompowni określenie struktury czionu „k"					
Oznaczenie średnicy	Średnica rurociągu tłoczonego	Występowanie w typach przepompowni			
Rurociągu tłoczonego „k"		PSA	PSB	PSC	PSD
1	Średnica ruciągu tłoczonego ø63	X	X		
2	Średnica ruciągu tłoczonego ø75	X	X	x	
3	Średnica ruciągu tłoczonego ø90	X	X	X	X
4	Średnica ruciągu tłoczonego ø110			X	X
5	Średnica ruciągu tłoczonego ø160			X	x

PRZEPOMPOWNIA PSA. 1

Przepompownia PSA. 1

Zastosowanie:

D posesje indywidualne,
D gospodarstwa rolne,
D osiedla jednorodzinne,
D ośrodki wczasowe,
D zakłady przemysłowe.

Elementy przepompowni:

D pompy: FZR.1, FZV.1, FZX.1,
D zbiornik polietylenowy PE,
D piony tłoczne,
D zawór kulowy zwrotny,
D zaczep sprzęgający górny ZSP.0,
układ przepłukiwania rurociągów zakończony końcówką strażacką,
zawór odcinający,
D sterowanie poziomu pływakami.

PRZEPOMPOWNIA PSB. 1

Przepompownia PSB. 1

Zastosowanie:

D miejskie i gminne systemy kanalizacyjne.

Elementy przepompowni:

\qquad
D pompy FZR.1, FZX.1, FZV.1(dot. kanalizacji deszczowej),
stopy sprzęgające ZSP. 1 (z prowadnicami rurowymi),
D piony tłoczne - stal kwasoodporna,
D zawory kulowe zwrotne systemu Szustera,
zawory odcinające,
kolektor zbiorczy,
układ przepłukiwania rurociągu zakończony końcówką strażacką,
łącznik rurowy,
sterowanie poziomem ścieków - pływaki lub sonda hydrostatyczna,
drabinka złazowa,

- zbiornik - polimerobeton, beton kl. B-45 lub laminat poliestrowo-szklany,

D instalacja przewietrzania przepompowni.

PRZEPOMPOWNIA PSB. 2

Przepompownia PSB. 2

Zastosowanie:

D miejskie i gminne systemy kanalizacyjne.

Elementy przepompowni:

D pompy FZR.1, FZX. 1 lub FZV.1(dot. kanalizacji deszczowej),

- stopy sprzęgające ZSP. 1 (z prowadnicami rurowymi),
piony tloczne - stal kwasoodporna,
D zawory kulowe zwrotne systemu Szustera,
zawory odcinające,
kolektor zbiorczy,
układ przepłukiwania rurociągu zakończony końcówką strażacką,
łącznik rurowy,
- sterowanie poziomem ścieków - pływaki lub sonda hydrostatyczna,
drabinka złazowa,
zbiornik - polimerobeton, beton kl. B-45 lub laminat poliestrowo-szklany,
D instalacja przewietrzania przepompowni.

PRZEPOMPOWNIA PSC. 2

Pryepompownia PSC.2

Zastosowanie:

D miejskie i gminne systemy kanalizacji deszczowej, ścieki przemysłowe.

Elementy przepompowni:

D pompy FZV.2, FZB. 2
D stopa sprzęgająca ZSP. 2 (z prowadnicami rurowymi),
D piony tłoczne - stal kwasoodporna,
D zawory kulowe zwrotne,
D zawory odcinające,
D kolektor zbiorczy,
D układ przepłukiwania rurociągu zakończony końcówką strażacką,

- łącznik rurowy,

D sterowanie poziomem ścieków - pływaki lub sonda hydrostatyczna,
D drabinka i podest obsługowy (opcja),
zbiornik - polimerobeton, beton kl. B-45 lub laminat poliestrowo-szklany,
D instalacja przewietrzana przepompowni.

PRZEPOMPOWNIA PSD. 2

Pruepompownit PSD. 2

Zastosowanie:

D miejskie i gminne systemy kanalizacyjne.
Elementy przepompowni:
D pompy FZV.3, FZB.3,

- stopa sprzęgająca ZSP. 3 (z prowadnicami rurowymi),

D piony tłoczne - stal kwasoodporna,
zawory kulowe zwrotne,
D zawory odcinające,
kolektor zbiorczy,

- układ przepłukiwania rurociągu zakończony końcówką strażacką,
- łącznik rurowy,

D sterowanie poziomem ścieków - pływaki lub sonda hydrostatyczna,

- drabinka i podest obsługowy (opcja),
zbiornik - polimerobeton, beton kl. B-45 lub laminat poliestrowo-szklany,
D instalacja przewietrzana przepompowni.

PRZEPOMPOWNIE ŚCIEKÓW

KARTA DOBORU PRZEPOMPOWNI ŚCIEKÓW HYDRO-VACUUM S.A.

Nazwa firmy, adres do korespondencji	Osoba do kontaktu, telefon, fax, e-mail	
Rodzaj ścieków (zawartość zawiesiny, granulacja)		
Maksymalny dopływ ścieków	$Q \max$ $[1 / \mathrm{s}]$ lub $\left[\mathrm{m}^{3} / \mathrm{h}\right]$	
Rzędna terenu, na którym zlokalizowana jest przepompownia	Rt [m n.p.m.]	
Rzędna dna kanału doprowadzającego ścieki do przepompowni	Rdop [m n.p.m.]	
Średnica i rodzaj materiału kanału doprowadzającego ścieki	Ddop [mm]	
Rzędna osi przewodu tłocznego w przepompowni	Rt__ps [m n.p.m.]	
Rzędna przewodu tłocznego na wlocie do odbiornika lub w najwyższym punkcie na trasie do odbiornika	Rt__max [m n.p.m.]	
Długość przewodu tłocznego	Lt [m]	
Średnica i rodzaj materiału przewodu tłocznego	Dtł [mm]	
Rodzaj i liczba oporów miejscowych na trasie rurociągu tłocznego		
Ciśnienie względne w odbiorniku ścieków	Hodb [m]	
Rzędna zwierciadła wód gruntowych w miejscu posadowienia przepompowni	Rwgr [m n.p.m.]	
Miejsce zlokalizowania przepompowni (teren zielony, droga)		
Średnica wewnętrzna zbiornika	$\Phi \quad[\mathrm{mm}]$	

RODZAJ ZBIORNIKA POMPOWNI	RODZAJE STEROWANIA POMPAMI	TYP WLAZU ZBIORNIKA	WYPOSAZENIE POMPOWNI
\square Polimerobeton	\square Pływakowy sygnalizator poziomów	\square Lekki żeliwny	\square Podest roboczy
\square Beton B-45	\square Sonda hydrostatyczna	\square Lekki nierdzewny	\square Drabinka złazowa
\square Laminat	\square Ciężki klasa B -125		
\square PE Polietylen			

Wypełnioną kartę prosimy przefaksować na numer: (056) 4507338.
W przypadku kłopotu z wypełnieniem prosimy o kontakt z naszym biurem doradczym pod nr telefonu (056) 4507501 lub (056) 4507477 .

Dział Obstugi Klienta

Hydro-Vacuum S.A. to.

D prawie 150 lat istnienia
D miliony pomp zaprojektowanych, wyprodukowanych i sprzedanych
D największa sieć dystrybucji i serwisu w Polsce

HYDRO-VACUUM ${ }^{\circledR}$ S.A.
 1862

ul. Droga Jeziorna 8, 86-303 Grudziądz, Polska
tel. +48 (56) 4507415 ; fax +48 (56) 4507346
Dział Eksportu: +48 (56) 4507 547, fax: +48 (56) 4507346
Serwis: tel. +48 (56) 4507 446; Serwis 24 h: 0661389000 www.hv.pl hv@hv.pl

