

Hippo range

33

Sealed self-priming thermoplastic pumps

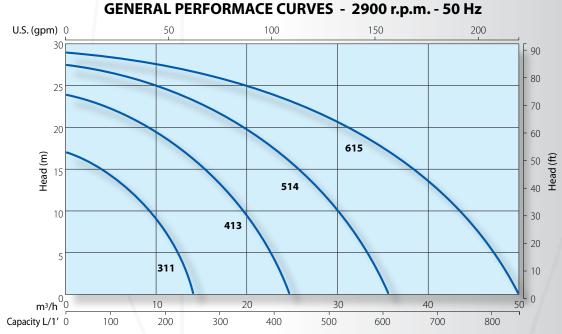
series ZMA

Hippo range

ZMA series of self-priming pumps.

These horizontal pumps, for their construction, after the first filling, are able to self-primes automatically also with the suction pipe empty and without the requirement of the bottom valve.

Particularly suitable for the transfer operations of non-viscous liquids with suction lift up to 5 meters, to be reduced in accordance with their specific weight and value of the vapor pressure.


Another important use is in the discharge of chemicals from tankers because, in the final phase, there is no risk of dry running.

The open impeller construction makes them suitable for the carriage liquids with solids.

KEY FEATURES

• no metal parts in contact with the pumped liquid;

- simplified construction;
- versatility of the various systems of the shaft seal according to the characteristics of the liquids;
- structural strength of the pump;
- possibility of pumping liquids with high specific weight as it is provided the application of different motor powers of each model of the pump;
- on request base or wheeled version.

NOTES. All curves are referred to: water at 20°C - viscosity 1 °E - specific gravity 1 kg/dm³

THE CONNECTION	IS	tab								
		ZMA								
PUMPS		311	413	514	615					
Ø inlet (BSP)	DeA	1/4″f	1/2″f	2″f	2 1/2"f					
Ø outlet (BSP)	DeM	1/4″f	1/2″f	2″f	2 1/2"f					
ISO flange	DnA	32	40	50	60					
	DnM	32	40	50	60					
ANSI flange	DnA	32	40	50	60					
DnM		32	40	50	60					
MOTOR		0,75	2,2	4	5,5					
POWER	kW	1,1	3	5,5	7,5					
POWER		1,5	4	7,5						
Fases	N°			3						
Voltage std	V		400 :	± 5%						
Motor protection	IP		5	5						

<image>

Certificate

Argal operates with ISO 9001:2000

Quality System certified by SQS-Iqnet.

THE MATERIALS

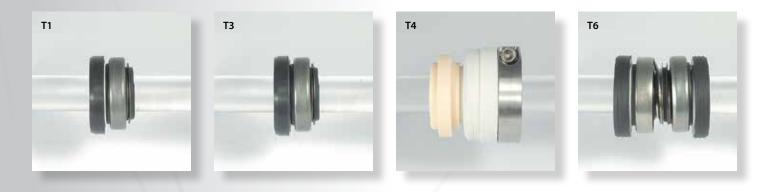
Version	Reinforced Polymers	Min temp.	Max temp.	Environment temp.
WR	GFR-PP	-5°C (23°F)	80°C	0÷40°C (14÷104°F)
WF	GFR-PP/PVDF	-5°C (23°F)	80°C	0÷40°C (14÷104°F)
FC	CFF-PVDF	-30°C (-22°F)	110°C	-20÷40°C (-4÷104°F)
QR	UPVC/PVDF	0°C (32°F)	40°C	0÷40°C (14÷104°F)

WR - The main resin is PP (polypropylene) reinforced with 30% glass fibre. It has a good mechanical resistance and has good dimensional stability when hot.

WF - The main resin is PP (polypropylene) reinforced with 30% fibre glass. The main components are in PVDF because this material has got a higher resistance to abrasion and use.

FC - The main resin is PVDF (Vinylidene polyfluoride) reinforced with 20% fibre glass. Good resistance to abrasion and is also mechanically resistant.

QR - Main resin is PVC (Polyvinyl chloride). Other parts are made in **PVDF**.


This version is particularly suitable to chromic acid, sulphur nitrite mixtures, sulphuric acid, sodium hypochlorite, turpentine and ozone.

ELASTOMERS

Version	Material	Description
V	FKM	Fluorine elastomer
E	EPDM	Ethylene-propylene rubber
K	FFKM	Perfluorelastomer

THE CONSTRUCTION OF MECHANICAL SEALS

		Externa	- Single		Double					
SEAL MODEL	T1	T3	T4	T5	T6	Т9	T10			
ROTATING PART	Carbon	SiC	PTFE/GFR	SiC	Carbon	SiC	SiC			
FIXED RING	CER	CER	CER	SiC	CER	CER	SiC			
BELLOWS	FKM	FKM	PTFE	FKM/EPDM	FKM	FKM	FKM/EPDM			
2^ ROTATING PART	/	/	/	/	Carbon	Carbon	Carbon			
2^ FIXED RING	/	/	/	/	CER	CER	CER			

SPECIFICATION OF MECHANICAL SEALS

SPECIFICATION OF MECHANICAL SEALS								
Condition of work	Model	Tipology						
Clean chemical mediums – max pressure 3 bar	T1	Single external, elastomer bellows						
Clean chemical mediums – suspended solids	T3	Single external, elastomer bellows						
Concentrated acids – no suspended solids	T4	Single external, PTFE bellows						
Clean chemical mediums – hard suspended solids	T5	Single external, elastomer bellows						
General purpose	T6	Double flushed, elastomer bellows						
Suspended solids	Т9	Double flushed, elastomeric bellows						
Hard suspended solids / salts	T10	Double flushed, elastomer bellows						

table 5

table 4

table 6

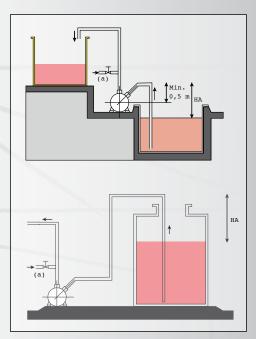
INSTALLATION STANDARDS OF ZMA PUMPS

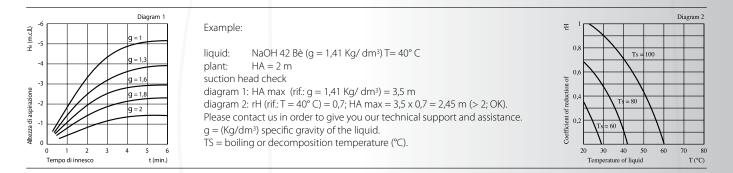
If the specific gravity is more than 1 Kg/dm³ the maximum suction head is to be reduced (see diagram 1).

If the temperature is more than 20 degrees Celsius the maximum suction head is to be reduced (see diagram 2).

To self-prime liquid with considerable emission of fumes at normal condition (1 atm; 20 °C) is permittable with limited suction head (e.g. HCL).

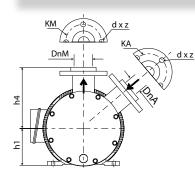
Maximum value of kinematic viscosità iis 10 cSt.

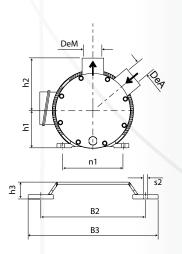

An increase of the nominal diameter of the pipes involves an extension of the self-priming time.


In presence of suction horizontal pipes the priming time is extended (e.g. at Ha = 5 m with horizontal pipe lenght of one meter the priming time is of 5.2 minutes [only 4.2 min. with vertical pipe]).

Planning the complex system do keep the priming time less than 6 min. ad the NPSH value more than 0,4 atm. (for liquids at room temperature).

Siphon-shaped pipes (filled with liquids) could hamper the air flow during the priming phase.


In the suction tank the surface of the liquids must be at atmospheric pressure. The delivery pipe outlet has to work at atmospheric pressure.



DIMENSIONS

																							ibic c
				onnectio			Pump and motor dimensions					Baseplate dimensions (optional)											
ZMA	Motor power (kW)	КМ	Ødxz	KA	Ødxz	a1	L(*)	G(*)	h1	h2	h4	s	Р	m1	n1	r	L1	L3	B2	B3	s2	h3	rb
311	0.75 1.1	100/89	18 x 4 /	100/89	18 x 4 /	53	453 453	132 132	80 80	107	200	9	185	100	125	253	245	185	248	308	14	40	215.5
	1.5 2.2		16 x 4		16 x 4		463	140	90 90			10		125	140	259 271.5	245	105	240	200			<u> </u>
413	3	110/98		110/98	18 x 4 /	73	542	140	100	130	210	10	223	125 140	140	278.5	245	185 205	248 305	308 359	14	40	228
514	4 4 5.5	125 / 121	16 x 4 18 x 4	125 / 121	16 x 4 18 x 4	79	550 540	174	112	165	230	12	268	140	160 190	285.5 299	259	205	305	359	14	55	241.
514	5.5 7.5	125 / 121	/ 19 x 4	125 / 121	/ 19x4	/9	540	166	112	105	230	12	208	140	190	299	259	205	305	329	14	22	241.3
615	5.7	145 / 140	18 x 4	145 / 140	18 x 4 /	124	688	166	112	165	250	12	268	140	190	317	259	205	305	359	14	55	259.5
010	7.5		19 x 4		19 x 4						250		200			517	200	200	555	555		55	200.0

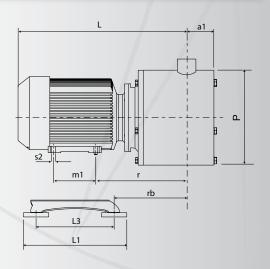


table 8

table 2

THE MATERIALS

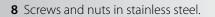
Versions	WR	WF	FC	QR
Pump casing	GFR-PP	GFR-PP	CFF-PVDF	PVC
Bracket	GFR-PP	GFR-PP	CFF-PVDF	CFF-PVDF
Impeller	GFR-PP	CFF-PVDF	CFF-PVDF	CFF-PVDF
Ogive	GFR-PP	CFF-PVDF	CFF-PVDF	CFF-PVDF
Diaphragm	PP	PP	PVDF	GFR-PTFE
Sleeve	GFR-PTFE	GFR-PTFE	PVDF	GFR-PTFE
Gasket	FKM (1)	FKM (1)	FKM (1),(2)	FKM (1),(2)
Baseplate (optional)	Stainless steel	Stainless steel	Stainless steel	Stainless steel
Screws	Stainless steel	Stainless steel	Stainless steel	Stainless steel

(1),(2) Upon request: (1) EPDM, (2) FFKM

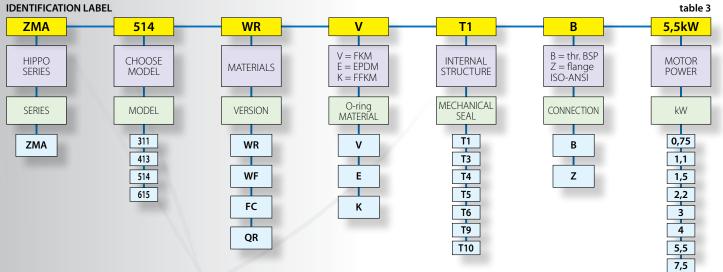
TECHNICAL SPECIFICATIONS

1 Stable dimension and strong structure guaranteed by the molding of thermoplastic materials; these features are insured by the thickness of each part.

2 Bracket with large windows in order to void accumulation of corrosive vapours.


3 Solid plastic open impeller with metal core to allow frequent start-stop cycles.

4 Diaphragm: special building procedure limits the damages in case of dry running and allows a quicker intervention and easy maintenance.


5 Sleeve: a good protection of the shaft.

6 Simple construction: only two parts (casing and bracket) carry out all the hydraulic and mechanical process by reducing the surface of static sealage (OR).

7 Total interchangeability of the most common mechanical seals. There are different types according to the liquid pumped.

IDENTIFICATION LABEL

