# UTN-L / UTN-BL I<sup>o</sup> frame



**UTN-BL PFA CLOSE COUPLED EXECUTION** 

Plastic and Fluoroplastic Lined Magnetic drive Horizontal - Single Stage - Process Centrifugal pumps Lining: PP (Polypropylene), PVDF (Polyvinylidene fluoride), PFA (Perfluoroalkoxy) Close-coupled and Long-coupled executions



Comply to: 2006/42/CE

Design to: ISO 2858 / EN 22858 (ex DIN 24256)

ISO 5199 - UNI 15783

**ATEX 100** Directive 94/9/EC (Ex)



Flanged UNI 1092-2 (ISO 7005-2) PN16RF type B slotted ANSI 150RF



### Maq drive concept

The synchronous drive configuration is based on an outer magnet ring assembly built to magnetically couple

with an inner magnet ring assembly.

These two magnet rings are locked together by the flux of attracting magnet poles flowing through the containment isolation shell.



#### UTN-L

Long Coupled pumps use the back pull-out principle and a strong bearing housing with flexible coupling.

Versatility

Suitableforhandlingcorrosive, aggressive and hazardous liquids (low viscosity, clean or slightly contaminated) in the chemical, petrochemical and Pharma industries, where the need of high safety standards is the first requirement.

eliability

The pump is equipped with reliable grease lubricated bearing bracket, especially developed to be suitable even under heavy duty service.

UTN range share the same hydraulic design with the UCL series (mechanical seal pumps) which have been developed focusing on chemical Industry's requests.



#### UTN-BL

Close coupled pumps are equipped with standard motors.

Petrachemical Pracessim

Prot Gasic Cheri

Treatmen

Fine Chemic

Getergents F.

WE Process

Active Photos



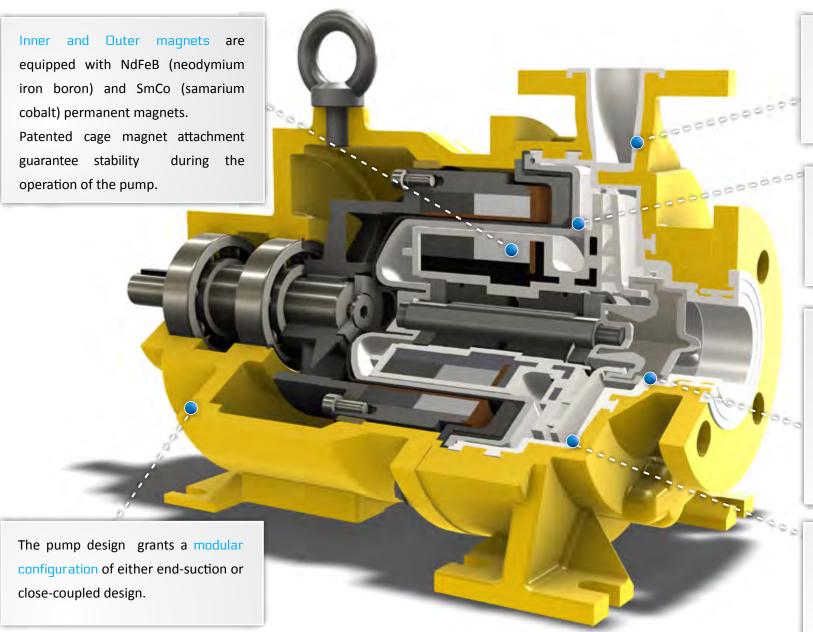

















Application Fields

### 3D VIEW



All PFA components are made through Transfer Moulding process.

The Transfer Moulding process is also employed for PVDF \ PP lined casing.

#### Sealless design

Total containment, essential for hazardous, aggressive or valuable product.

All wetted parts have a high chemical resistance employing a performing material as Virgin unfilled PFA, granting also a wall thickness of at least 4mm to 5mm Virgin PFA.

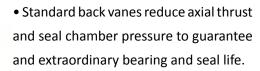
Alternative available materials for the Wetted parts: PP and PVDF.

Vacuum resistant housing lining.

Moreover, all PFA components are
made through transfer moulding
process.

### **FEATURES**




#### **CASING**

- The ductile cast iron armour protects the fluoroplastic peripheral surfaces of the pump from pipe strain, vibration, external shocks and during the handling; moreover it allows the casing to be Vacuum resistant.
- Top centerline discharge for air handling, selfventing.
- Drained casing (optional).

#### **IMPELLER ASSEMBLY**

• The closed impeller design, made around a sturdy metallic core surrounded by a minimum 4mm of fluoroplastic material, provides

maximum efficiency and reliability.



• The integral design of the impeller and inner magnet prevents any misalignment problem, reducing also the production cost.



#### **ISOLATION SHELL**

- Virgin unfilled PFA double Isolation Shell configuration: Virgin PFA on wet side externally reinforced by Carbon Fibre reinforcement.
- PP and PVDF: more than 4mm of thickness.
- Zero Eddy Current Losses thanks to non-metallic execution.



#### **SHAFT**

- Axial and radial loads are well distributed thanks to the highly reliable rotating parts design. The static shaft (SiC, Ceramic or RunSafeSiC) is supported in the can and by the lining suction cover.
- Its small diameter and the absence of bending forces, allow the shaft to be a reliable support for the impeller assembly: moreover, this execution limits the circumferential speed of plain bearings, as well as their heating or wear.

#### **ROTATING BUSHINGS AND AXIAL THRUST**



Large Silicon Carbide
(Carbon or Ceramic)
Rotating Bushings and
Static Axial Thrust
design offers ruggedness
even under heavy duty
conditions.

#### **SUCTION COVER**

The suction cover is designed to guarantee a long life time even under stress, in fact it's a lined armoured piece made around a strong metal core on PFA execution.



#### RUNSAFESIC MICROCRYSTALLINE DIAMOND COATING

• Lowest coefficient of friction and heat generation, even when lubrication is insufficient or under dry running condition.



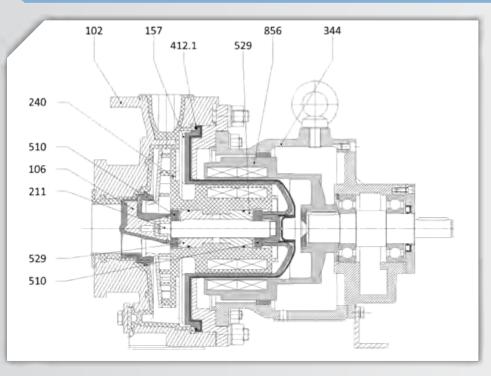


- Universal chemical resistance.
- Increased service life.
- Virtually no wearing of the diamond coating.
- Significant energy savings.

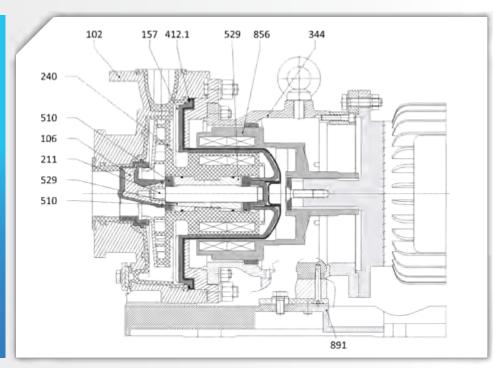
#### **PAINTING COATING QUALITY**

The metal surfaces are protected by a high performance three coating layers (240 micron):

- Epoxy zinc pain
- Epoxy amidic modified vinyl
- Epoxy enamel paint or aliphatic acrylic polyurethane


Available upon request :

EN ISO 12944-5 C5M and

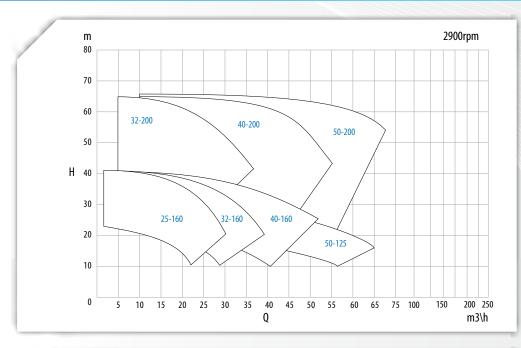

C5I protecting paint system grades.

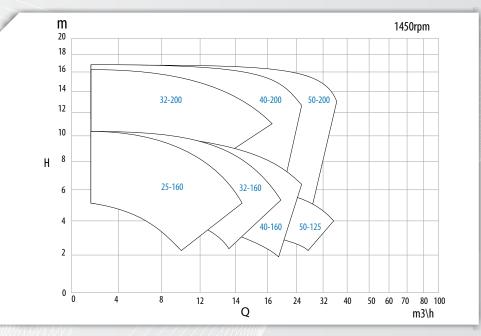


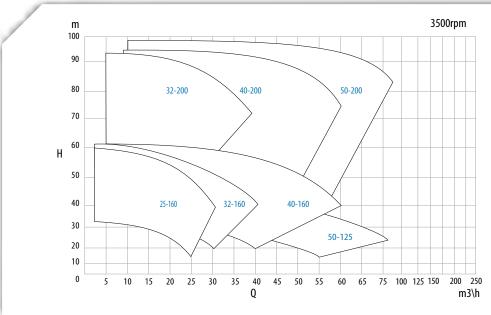
## SECTIONAL DRAWING

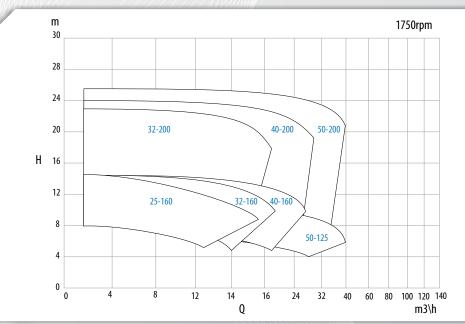


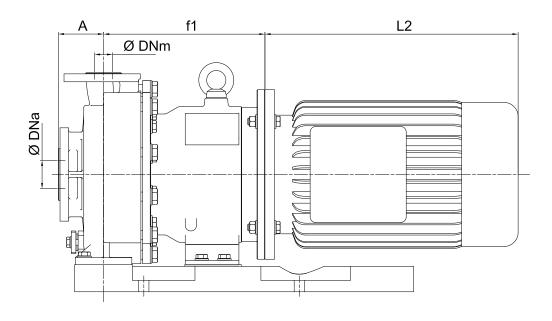


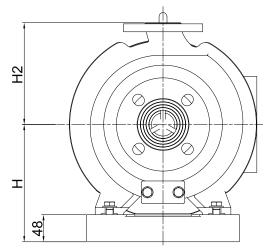




| Performances 2900 rpm       | Q max = 75 m3/h - H max = 65 mcl                                                                                                                                       |
|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Electric Motors             | <ul> <li>UTN-BL: 1.1 kW (motor size 80) -&gt; 18.5 kW (motor size 160)</li> <li>UTN-L: 0.75 kW (motor size 80) -&gt; 37 kW (motorsize 200)</li> </ul>                  |
| Temperature range           | <ul> <li>PP: -10 °C -&gt; +70 °C</li> <li>PVDF: -30 °C -&gt; +100 °C</li> <li>PFA: -50 °C -&gt; +140 °C</li> </ul>                                                     |
| Allowable Pressure<br>Range | <ul> <li>PP: from 16 bar (20 °C) to 12 bar (70 °C)</li> <li>PVDF: from 16 bar (20 °C) to 8 bar (100 °C)</li> <li>PFA: from 16 bar (20 °C) to 8 bar (140 °C)</li> </ul> |
| Flange Connections          | UNI 1092-2 / ISO 7005-2 PN 16RF, type B slotted to ASME /ANSI class 150                                                                                                |
| Viscosity                   | min : 1 cSt min - max : 100 cSt                                                                                                                                        |
| Allowable Solids            | <ul><li>Max concentration 3 % by weigth</li><li>Max particle size 0,25 mm</li></ul>                                                                                    |


Part list

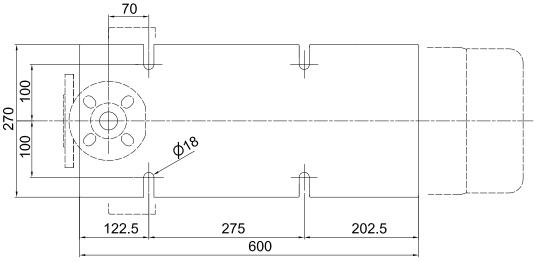

| DIN   | Component         | Material                                 |
|-------|-------------------|------------------------------------------|
| 102   | Casing            | PP lined \ PVDF lined \ PFA lined        |
| 106   | Suction Casing    | PP-GF \ PVDF-CF \ PFA lined              |
| 157   | Isolation Shell   | PP-GF\PVDF-CF\PFA+CF                     |
| 211   | Shaft             | SiC \ Al2O3 \ RunSafe SiC                |
| 240   | Impeller Assembly | PP lined \ PVDF lined \ PFA lined        |
| 344   | Lantern           | GS400                                    |
| 412.1 | O-Ring Casing     | EPDM \ FPM \ FPM enc. FEP                |
| 510   | Thrust Bearing    | SiC \ Al2O3 \ RunSafe SiC                |
| 529   | Rotating Bushing  | SiC \ PTFE-Al2O3 \ Graphite \RunSafe SiC |
| 856   | Outer Magnet      | GS400+Ryton                              |
| 891   | Pump foot pad     | GS400                                    |







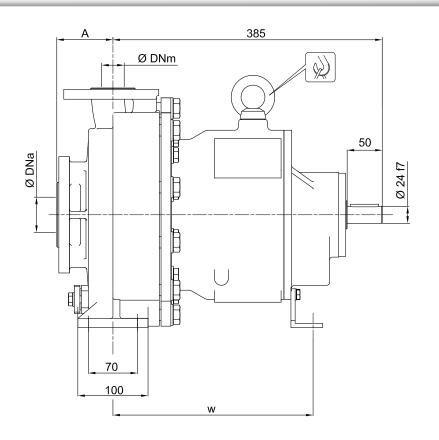



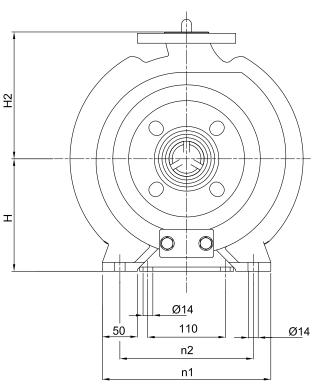





| Pump Model       | Weight (w\o motor) |
|------------------|--------------------|
| UTN-BL 40-25-160 | 40kg               |
| UTN-BL 50-32-160 | 45kg               |
| UTN-BL 65-40-160 | 75kg               |
| UTN-BL 80-50-125 | 50kg               |
| UTN-BL 50-32-200 | 75kg               |
| UTN-BL 65-40-200 | 80kg               |
| UTN-BL 80-50-200 | 85kg               |

| Motor | f1  | Frame |
|-------|-----|-------|
| Size  | mm  | Frame |
| 80    | 257 |       |
| 90    | 257 |       |
| 100   | 257 | B5    |
| 112   | 257 | ВЭ    |
| 132   | 287 |       |
| 160   | 305 |       |

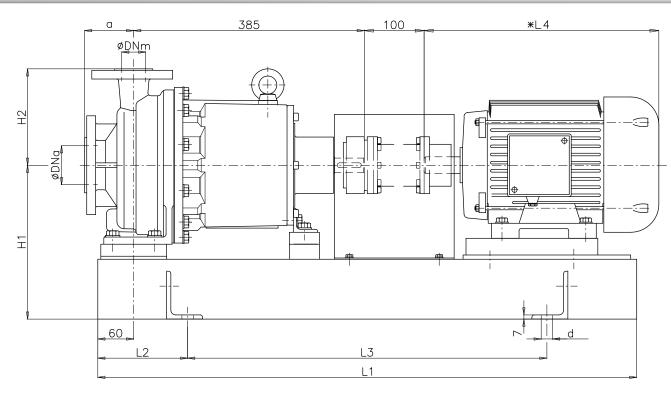


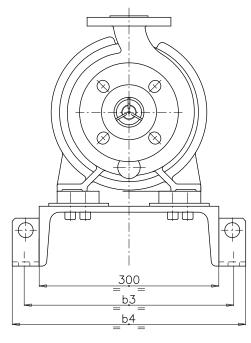


| Decree Mandal    |    | D.v.                           |    | DN                                        | Α   | Н      | H2  |    |    |
|------------------|----|--------------------------------|----|-------------------------------------------|-----|--------|-----|----|----|
| Pump Model       |    | Dna                            |    | DNm                                       |     | DINIII |     | mm | mm |
| UTN-BL 40-25-160 | 40 |                                | 25 |                                           |     |        |     |    |    |
| UTN-BL 50-32-160 | 50 |                                | 32 | UNI EN 1092-1 PN 16RF slotted to ANSI 150 | 80  | 180    | 160 |    |    |
| UTN-BL 65-40-160 | 65 | UNI EN 1092-1                  | 40 |                                           |     |        | 100 |    |    |
| UTN-BL 80-50-125 | 80 | PN 16RF<br>slotted to ANSI 150 | 50 |                                           | 100 | 180*   |     |    |    |
| UTN-BL 50-32-200 | 50 |                                | 32 |                                           | 80  |        | 180 |    |    |
| UTN-BL 65-40-200 | 65 |                                | 40 |                                           | 100 | 208    | 180 |    |    |
| UTN-BL 80-50-200 | 80 |                                | 50 |                                           | 100 |        | 200 |    |    |
|                  |    |                                |    |                                           |     |        |     |    |    |

\*size 125 equipped with motor frame 160: H=208

\* L2 dimension is according to installed motor manufacturer






| Pump Model                                                  |    | <b>Ø</b> Dna                                    | ØDna ØDN |                     | Α   | w   | Н   | H2  | n1  | n2  |
|-------------------------------------------------------------|----|-------------------------------------------------|----------|---------------------|-----|-----|-----|-----|-----|-----|
|                                                             |    |                                                 |          | ,                   |     | mm  | mm  | mm  | mm  | mm  |
| UTN-L 40-25-160                                             | 40 |                                                 | 25       |                     | 80  |     | 132 | 160 |     |     |
| UTN-L 50-32-160                                             | 50 | UNI EN 1092-1<br>PN 16RF<br>slotted to ANSI 150 | 32       | UNI EN 1092-1       |     |     |     |     | 240 |     |
| UTN-L 65-40-160                                             | 65 |                                                 | 40       |                     |     |     |     |     |     | 190 |
| UTN-L 80-50-125                                             | 80 |                                                 | 50       | PN 16RF             | 100 | 285 |     |     |     | 190 |
| UTN-L 50-32-200                                             | 50 |                                                 | 32       | slotted to ANSI 150 | 80  |     |     | 180 |     |     |
| UTN-L 65-40-200                                             | 65 |                                                 | 40       |                     | 100 |     | 160 |     |     |     |
| UTN-L 80-50-200                                             | 80 |                                                 | 50       |                     | 100 |     |     | 200 | 262 | 212 |
| * L4 dimension is according to installed motor manufacturer |    |                                                 |          |                     |     |     |     |     |     |     |

| Pump Model      | Weight (w\o<br>motor) |  |  |  |  |
|-----------------|-----------------------|--|--|--|--|
| UTN-L 40-25-160 | 40kg                  |  |  |  |  |
| UTN-L 50-32-160 | 45kg                  |  |  |  |  |
| UTN-L 65-40-160 | 75kg                  |  |  |  |  |
| UTN-L 80-50-125 | 50kg                  |  |  |  |  |
| UTN-L 50-32-200 | 75kg                  |  |  |  |  |
| UTN-L 65-40-200 | 80kg                  |  |  |  |  |
| UTN-L 80-50-200 | 85kg                  |  |  |  |  |

## **OVERALL DIMENSIONS**





| Paconlate Arrangement                                                                                       |                                                             |      |     |     |     |     | Motor | Size |     |     |
|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|------|-----|-----|-----|-----|-------|------|-----|-----|
| Baseplate Arrangement                                                                                       |                                                             |      |     |     |     | 100 | 112   | 132  | 160 | 180 |
| DNa DNm UNI EN 1092-2 PN 16RF UNI EN 1092-2 PN 16RF a H2 Pump model slotted to ANSI 150 slotted to ANSI 150 |                                                             |      |     |     | H1  |     |       |      |     |     |
|                                                                                                             | Ø                                                           | Ø    | mm  | mm  | mm  | mm  | mm    | mm   | mm  | mm  |
| UTN-L 40-25-160                                                                                             | 40                                                          | 25   |     | 165 | 257 | 257 | 257   | 272  | 272 | 292 |
| UTN-L 50-32-160                                                                                             | 50                                                          | 32   | 80  | 160 | 257 | 257 | 257   | 272  | 272 | 292 |
| UTN-L 65-40-160                                                                                             | 65                                                          | 40   | 80  | 180 | 270 | 270 | 270   | 300  | 300 | 300 |
| UTN-L 80-50-125                                                                                             | 80                                                          | 50   |     | 160 | 257 | 257 | 257   | 272  | 272 | 292 |
| UTN-L 50-32-200                                                                                             | 50                                                          | 32   |     | 180 | 270 | 270 | 270   | 300  | 300 | 300 |
| UTN-L 65-40-200                                                                                             | 65                                                          | 40   | 100 | 160 | 257 | 257 | 257   | 272  | 272 | 292 |
| UTN-L 80-50-200                                                                                             | 80                                                          | 50 2 |     | 200 | 270 | 270 | 270   | 300  | 300 | 300 |
| * L4 dimension is ac                                                                                        | * L4 dimension is according to installed motor manufacturer |      |     |     |     |     |       |      |     |     |

| Motor<br>Size    | L1   | L2  | L3  | b3  | b4  | d    |
|------------------|------|-----|-----|-----|-----|------|
|                  | mm   | mm  | mm  | mm  | mm  | Ø mm |
| 80-90<br>100-112 | 900  | 150 | 600 | 350 | 390 | 19   |
| 132              | 1000 | 170 | 660 | 400 | 450 | 24   |
| 160-180          | 1120 | 190 | 740 | 440 | 490 | 24   |



### NEW UTN 125-80-160 - SEE SPECIFIC BROCHURE



UTN 125-80-160 casing : new 125-80-160 casing is matching perfectly the impeller design , to achieve the best hydraulic efficiency.

The benefits of the lined technology are:

- stability to increased temperature
- under vacuum working capabilities
- constant coating layer thickness thanks to TM process
- high resistance to the permeation thanks to the TM process (for PFA and PVDF execution)

New Impeller 125–80–160 assembly made in one piece granting the maximum reliability and stability during the pump operation.



New Suction Cover: using a static shaft design, the new UTN 125-80-160 will have also a new TM Lined suction cover.

The new Suction cover is able to hold the efforts caused on it by the shaft and the Axial Thrust Shoes, moreover 3 generous anti-rotating flat surfaces lock the suction cover into position on the casing.





#### C.D.R. Pompe S.p.A.

Via P. Togliatti, 26/A - 20030 Senago (MI) - Italy

Tel. +39029901941

Fax +39029980606

www.cdrpompe.com

info@cdrpompe.it







#### **Technical Characteristics**

The technical data and characteristics stated in this General Catalogue are not binding. CDR Pompe S.p.a. reserves the right to make modifications without notice. Therefore data, dimensions, performances and any other stated issues are indicative only and not binding. Anyway for any technical details you must require an up-to-date product technical card.